Field observations of wave-driven circulation over spur and groove formations on a coral reef
نویسندگان
چکیده
Spur and groove (SAG) formations are found on the forereefs of many coral reefs worldwide. Modeling results have shown that SAG formations together with shoaling waves induce a nearshore Lagrangian circulation pattern of counter-rotating circulation cells, but these have never been observed in the field. We present results from two separate field studies of SAG formations on Palmyra Atoll which show their effect on waves to be small, but reveal a persistent order 1 cm/s depth-averaged Lagrangian offshore flow over the spur and onshore flow over the grooves. This circulation was stronger for larger, directly incident waves and low alongshore flow conditions, consistent with predictions from modeling. Favorable forcing conditions must be maintained on the order of 1 h to accelerate and develop the SAG circulation cells. The primary cross and alongshore depth-averaged momentum balances were between the pressure gradient, radiation stress gradient, and nonlinear convective terms, and the bottom drag was similar to values found on other reefs. The vertical structure of these circulation cells was previously unknown and the results show a complex horizontal offshore Lagrangian flow over the spurs near the surface driven by alongshore variability in radiation stress gradients. Vertical flow was downward over the spur and upward over the groove, likely driven by alongshore differences in bottom stress and not by vortex forcing.
منابع مشابه
Hydrodynamics of spur and groove formations on a coral reef
[1] Spur and groove (SAG) formations are found on the fore reefs of many coral reefs worldwide. Although these formations are primarily present in wave-dominated environments, their effect on wave-driven hydrodynamics is not well understood. A twodimensional, depth-averaged, phase-resolving nonlinear Boussinesq model (funwaveC) was used to model hydrodynamics on a simplified SAG system. The mod...
متن کاملHydrodynamic Modelling of Coral Reefs:Ningaloo Reef-Western Australia
As with all coral reef systems, the ecology of Ningaloo Reef is closely linked to water circulation which transport and disperse key material such as nutrients and larvae. Circulation on coral reefs may be driven by a number of forcing mechanisms including waves, tides, wind, and buoyancy effects. Surface waves interacting with reefs have long been known to dominate the currents on many coral r...
متن کاملRemote Sensing
An investigation into the evolution of coral rubble deposits on a coral reef platform is assessed using high-resolution remote sensing data and geospatial analysis. Digital change detection analysis techniques are applied to One Tree Reef in the southern Great Barrier Reef by analysing aerial photographs and satellite images captured between 1964 and 2009. Two main types of rubble deposits were...
متن کاملBiodiversity and distribution patterns of coral reef ecosystems in ROPME Sea Area (Inner part: Persian Gulf -Iranian waters)
The Persian Gulf is northern part of the ROPME Sea Area (RSA), and is semi-enclosed shallow sea which located in subtropical climate. Measuring is 1000km in length, varying in width 60-340km, and average depth is about 35m and maximum depth is 105m. This research was carried out during 2005-2010 for reviewing the corals status and determination of coral reef habitats distribution in the Persian...
متن کاملEpisodic circulation and exchange in a wave-driven coral reef and lagoon system
We examined the role of wave-driven circulation relative to wind and buoyancy forcing in a coral reef–lagoon system. Circulation measurements in Paopao Bay, Moorea, French Polynesia, during austral summer show the importance of waves in driving flows over the reef crest, through the lagoon, and out the reef pass. Tides were comparatively weak, due to proximity to amphidromic points, and exhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015